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Chapter 5
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F IGURE 5.1. Bending magnet radiation occurs when a relativistic electron travels in a uniform magnetic
field, executing a circular motion with acceleration directed toward the center. The radiation is directed
tangentially outward in a narrow radiation cone, giving the appearance of a sweeping “searchlight.”
The radiation spectrum is very broad, analogous to a “white light” x-ray light bulb. The emission angle
is typically 1/γ , whereγ is the Lorentz contraction factor.

In this chapter we briefly review the central features of synchrotron radiation, beginning
with estimates of radiated photon energies and angular divergence based on the application
of well-known results from the theory of relativity and Heisenberg’s uncertainty principle.
For bending magnet radiation, formulae describing photon flux as a function of angle and
photon energy are summarized in a convenient handbook style. Undulator radiation, generated
by relativistic electrons traversing a periodic magnet structure, is calculated in detail. The
approach taken makes maximal use of the well-known classical results of dipole radiation.
This is accomplished by solving the electron equation of motion in the laboratory frame of
reference, then making a Lorentz transformation to the frame of reference moving with the
average electron velocity. In this frame of reference the motion is non-relativistic, yielding
the well-known sin22 angular dependence of radiated power per unit solid angle. These
results are then Lorentz transformed back to the laboratory (observer) frame of reference. A
central radiation cone, defined as containing a 1/N relative spectral bandwidth, is shown to
correspond to an angular half width of 1/γ

√
N, whereN is the number of magnet periods.

Power radiated in the central cone is readily calculated from the dipole formula. Calculations
of spectral brightness follow in a straightforward manner. Wiggler radiation, the strong field
extension of undulator radiation, is shown to be dominated by a large number of harmonics
that merge to a continuum at high photon energy. The spectral shape of wiggler radiation
is similar to that of bending magnetic radiation, but shifted to higher photon energy (by the
higher magnetic fields) and to increased (2N) photon flux.

5.1 INTRODUCTION

It is well known that an accelerated charged particle, such as one traveling on a curved
trajectory, will emit radiation. When moving at relativistic speeds, this radiation is emitted
as a narrow cone tangent to the path of the particle.1 Synchrotron radiation is generated
when relativistic electrons (or positrons) are accelerated (undergo a change of direction) in a
magnetic field, as seen in Figure 5.1.

There are three types of magnetic structures commonly used to produce synchrotron
radiation: bending magnets, undulators, and wigglers. Bending magnets cause a single curved
trajectory as pictured in Figure 5.1. The result is a fan of radiation around the bend. Undulators
are periodic magnetic structures with relatively weak magnetic fields. The periodicity causes
the electron to experience a harmonic oscillation as it moves in the axial direction, resulting
in a motion characterized by small angular excursions called undulations,2,3 as shown in
Figure 5.2. The weak magnetic fields cause the amplitude of this undulation to be small.
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F IGURE 5.2. Undulator radiation is generated as a highly relativistic electron traverses a periodic
magnetic field. In the undulator limit, the magnetic field is relatively weak and the resultant angular
excursions of the electron are smaller than the angular width of the natural radiation cone, 1/γ ,
normally associated with synchrotron radiation. The frequency spread of undulator radiation can be
very narrow, and the radiation can be extremely bright and partially coherent, under certain
circumstances. The characteristic emission angle is narrowed by a factor

√
N, whereN is the number

of magnetic periods. TypicallyN is of order 100. Depending on the magnet strength, harmonic
radiation may be generated.
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F IGURE 5.3. Wiggler radiation is also generated from a periodic magnet structure, but in the strong
magnetic field limit where in at least one plane the angular excursions are significantly greater than the
natural (1/γ ) radiation cone. Because accelerations are stronger in this limit, the radiation generated
peaks at higher photon energies and is more abundant (higher photon flux and more power). The
radiation spectrum is very broad, similar to that of the bending magnet. Although more power is
radiated, wiggler radiation is less bright because of the substantially increased radiation cone.

Hence, the resultant radiation cone is narrow. In combination with a tightly confined electron
beam, this leads to radiation with small angular divergence and relatively narrow spectral
width, properties we generally associate with the coherence properties of lasers.4 Wigglers
are a strong magnetic field version of undulators. Due to the stronger fields, the oscillation
amplitude and concomitant radiated power is larger. The radiation cone is broader in both space
and angle. The radiation spectrum is similar to that of bending magnets, but characterized
by a much larger photon flux and a shift to harder x-rays (shorter wavelengths), as seen in
Figure 5.3.

Historically, synchrotron radiation was first observed as energy loss in electron storage
rings. Logically, the first synchrotron radiation sources for general scientific use were simple
parasitic beam ports utilizing otherwise lost radiation at existing storage rings. Over time,
however, sources have been constructed for dedicated use as synchrotron radiation facilities
(second generationfacilities). The newest synchrotron facilities (third generationfacilities)
are composed of many straight sections specially optimized to produce high brightness undula-
tor and wiggler radiation. Figure 5.4 illustrates yesterday’s and today’s synchrotron radiation
facilities.

Figure 5.5 is a simple schematic of a synchrotron radiation source. The relativistic elec-
trons are injected into the ring from a linear accelerator and (energy) booster synchrotron. Var-
ious magnetic lenses keep the electrons traveling along the desired trajectory. Synchrotron
radiation is produced as the electrons pass through the bending magnets, undulators, and
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F IGURE 5.4. (a) Early synchrotron radiation facilities were basically circular rings for bending magnet
radiation, although some have been retrofitted with periodic magnetic structures (undulators or
wigglers). They generally have an electron beam of relatively large cross-section and angular
divergence. (b) Modern storage rings are dedicated to broad scientific use and optimized for high
spectral brightness through the inclusion of many long straight sections for undulators and wigglers, as
well as very tightly confined (spatial and angular extent) electron beams. Bending magnet radiation is
also generated in turning from one straight section to the next (not shown).

wigglers. Electron beam energy lost to synchrotron radiation is replenished with a radio-
frequency accelerator (a cavity with an axial electric field oscillating at the frequency of
arrival of sequential electron bunches). Typical parameters characterizing synchrotron radia-
tion from two modern storage rings, one optimized for the generation of soft x-rays and one
optimized for the generation of hard x-rays, are given in Table 5.1.

5.2 CHARACTERISTICS OF BENDING MAGNET RADIATION

In this introductory section, we wish to use simple arguments to show why one expects to see
radiation at x-ray wavelengths. The arguments are based on an estimate of the time duration
of the observed radiation signal and an application of Heisenberg’s uncertainty principle for
photon energy. Bending magnet radiation is sometimes described as a sweeping “searchlight,”
analogous to the headlight of a toy train on a circular track. This searchlight effect is a general
manifestation associated with radiation from relativistic particles undergoing acceleration. An
electron experiencing radial acceleration as it travels around a circle emits radiation through a
broad angular pattern – as seen in its frame of reference. However, angular patterns are very
much compressed upon Lorentz transformation from one frame of reference (that moving
with the electron) to another (the laboratory frame of the observer) when the relative motion
is highly relativistic. In Appendix F it is shown that angles measured from the direction of
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F IGURE 5.5. This sketch of an electron storage ring optimized for soft x-ray radiation shows a linear
accelerator (linac) and booster synchrotron that bring electrons up to an energy matched to storage ring
magnet settings, an injection system, which directs electrons into the ring, and a radio frequency (rf)
generator to replenish the energy lost to synchrotron radiation as the electrons pass bending magnets,
undulators, and wigglers. Straight sections for undulators and wigglers direct energy into beamlines
and end sections for various scientific studies. Bending magnet radiation beamlines, located between
straight sections, are not shown.

motion are related by

tanθ = sinθ ′

γ (β + cosθ ′)
(5.1)

whereθ ′ is observed in the frame of reference moving with the electron,θ is in the laboratory
frame,β ≡ v/c (where v is the relative velocity between frames andc is the velocity of light),
andγ ≡ 1/(1− v2/c2)1/2. For highly relativistic electronsβ approaches unity, andγ À 1.
Thus for arbitrarily large emission anglesθ ′, in the electron frame, the radiation is folded into
a narrow forward radiation cone of half angle

θ ' 1

2γ
(5.2)

leading to the description of synchrotron radiation as being concentrated in a narrow “search-
light beam.”
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TABLE 5.1. Typical parameters for synchrotron radiation at two complementary storage
ring facilities. Both rings are optimized for small electron phase space (emittance) and
the use of multiple straight sections for undulators and wigglers. Bending magnet
radiation is obtained as the electron beam turns from one straight section to the next.
The two facilities are complementary in that one is optimized for soft x-rays while the
other is optimized for hard x-rays. The Advanced Light Source (ALS) is operated by
Lawrence Berkeley National Laboratory in California. The Advanced Photon Source
(APS) is operated by Argonne National Laboratory in Illinois. Parameters for other
facilities around the world are tabulated by Winck (Ref. 5).

Facility ALS APS

Electron energy 1.90 GeV 7.00 GeV
γ 3720 13,700
Current (mA) 400 100
Circumference (m) 197 1100
RF frequency (MHz) 500 352
Pulse duration (FWHM) (ps) 35–100 170

Bending Magnet Radiation:
Bending magnet field (T) 1.27 0.599
Critical photon energy (keV) 3.05 19.5
Critical photon wavelength 0.407 nm 0.0636 nm (0.636Å)
Bending magnet sources 24 35

Undulator Radiation:
Number of straight sections 12 40
Undulator period (typical) (cm) 5.00 3.30
Number of periods 89 72
Photon energy (K = 1, n = 1) 457 eV 9.40 keV
Photon wavelength (K = 1, n = 1) 2.71 nm 0.132 nm (1.3Å)
Tuning range (n = 1) 2.0–5.4 nm 0.10–0.35 nm
Tuning range (n = 3) 0.68–1.8 nm 0.033–0.12 nm
Central cone half-angle (K = 1) 35µrad 11µrad
Power in central cone (K = 1, n = 1) (W) 2.3 12
Flux in central cone (photons/s) 3.1× 1016 7.9× 1015

σx, σy (µm) 260, 16 320, 50
σ ′x, σ ′y (µrad) 23, 3.9 23, 7
Brightness (K = 1, n = 1)a

[(photons/s)/mm2 · mrad2 · (0.1%BW)] 2.3× 1019 4.8× 1018

Total power (K = 1, all n, all θ ) (W) 187 780
Other undulator periods (cm) 3.65, 8.00, 10.0 2.70, 5.50, 12.8

Wiggler Radiation:
Wiggler period (typical) (cm) 16.0 8.5
Number of periods 19 28
Magnetic field (maximum) (T) 2.1 1.0
K (maximum) 32 7.9
Critical photon energy (keV) 5.1 33
Critical photon wavelength 0.24 nm 0.038 nm (0.38Å)
Total power (max.K ) (kW) 13 7.4

aUsing Eq. (5.65). See comments following Eq. (5.64) for the case whereσ ′x,y ' θcen.
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F IGURE 5.6. (a) A schematic of bending magnet radiation illustrating the “searchlight” effect, similar to
that of the headlight of a train on a circular track, which is a general feature of radiation by highly
relativistic electrons. (b) The time width of the observed radiation pulse is determined by transit time
differences between radiation and electrons between pointsA andB. The uncertainty relationship
between pulse duration and minimal spread of photon energy indicates that a broad range of photon
energies, extending to the x-ray region, is to be expected. (Following Hofmann.2)

As an electron traverses a curved path, radiation is emitted tangentially, as seen in Fig-
ure 5.6, in a narrow radiation cone of half widthθ ' 1/2γ . For electrons circulating in
a ring, we can estimate the photon energies and wavelengths radiated using simple argu-
ments based on Heisenberg’s uncertainty principle,1E · 1τ ≥ h̄/2, where1τ is the (rms)
time duration during which one detects radiation, and1E is the uncertainty (rms spread)
in observed photon energies. We begin by estimating the detected pulse duration, 21τ , of
radiation emitted by a short bunch of electrons following a circular trajectory of radiusR.
We estimate the time extent of the observed signal by considering a detector at pointB or
equivalently further to the right atB′. As the electron comes within an angleθ ' 1/2γ
of the horizon at pointA, the detector will be in the path of emitted photons. These pho-
tons will be detected after a transit time of the light,τr . The signal will continue until
the electron reaches pointB, beyond which the radiation cone has turned too far to permit
reception by our detector. The electron will reach pointB after a transit time around the
bend,τe. The pulse width,1τ , shown in Figure 5.6(b) is the difference between these two
transit times, i.e., the detector detects radiation after a timeτr , and stops detecting radiation
at τe.

Following this outline, we see that

21τ = τe− τr

21τ = arc length

v
− radiation path

c

21τ ' R · 2θ
v
− 2Rsinθ

c

Noting thatθ ' 1/2γ , making a small angle approximation for sinθ , and substituting v= βc,
one obtains

21τ ' R

γ v
− R

γ c
= R

γ

(
1

v
− 1

c

)
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Writing v = βc, one has

21τ ' R

γβc
(1− β)

Noting that

γ ≡ 1√
1− β2

γ 2 = 1

1− β2
= 1

(1− β)(1+ β)

and thus forβ = v/c approaching unity

1− β ' 1

2γ 2
(5.3)

the expression for the duration of the radiation pulse becomes

21τ ' R

2cγ 3
(5.4a)

This can be expressed as an anticipated photon energy spread through the use of Heisenberg’s
uncertainty principle6 and an expression for the radius of curvatureR. From the uncertainty
principle,

1E ·1τ ≥ h̄/2

Combining this with the expression in Eq. (5.4a) for the pulse duration, we see that the photons
will have an rms energy spread of order∗

1E ≥ 2h̄cγ 3

R
(5.4b)

To better appreciate the photon energies implied by Eq. (5.4b) it is useful to replace the
electron radius of curvatureR with an expression involvingγ and the magnetic field. For
electrons crossing a perpendicular magnetic field, as in a bending magnet, the relativistically
correct form of the equation of motion can be written as

F = dp
dt
= −ev× B

wherep = γmv is the momentum,6 m is the electron rest mass,γ is the Lorentz factor,v is
the velocity, andB is the magnetic flux density. For electron motion in a uniform magnetic
field, the electron energy and thusγ is a constant, so that only the direction ofv changes, not
its magnitude. To see this we write the rate of change of electron energy as

d Ee

dt
= v · F = −ev · (v× B)︸ ︷︷ ︸

≡0

∗Similar arguments are given in J.D. Jackson (Ref. 1), First Edition, pp. 475–477.
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which is zero by vector identity (see Appendix B). Thus the electron energy, which can be
written6 asγmc2, is a constant, viz.,

d Ee

dt
= d

dt
(γmc2) = 0

Thusγ , and therefore the scalar magnitude v of the velocity, are both constant. The equation
of motion can be rewritten as

γm
dv
dt
= −ev× B

Since the magnitude ofv is constant, the magnitude of the acceleration is also constant, equal
to evB/γm, in a plane perpendicular toB. This corresponds to motion along a circle, with
centripetal acceleration v2/R, so that the scalar form of the equation of motion becomes

γm

(
−v2

R

)
= −evB

Solving for the radius of curvature, we have

R= γmv

eB

or for highly relativistic electrons

R' γmc

eB

Using this in Eq. (5.4b), the rms spread of photon energies for bending magnet radiation
becomes

1E ≥ 2eh̄Bγ 2

m
(5.4c)

which we note depends on the electron charge to mass ratio,e/m, and the productBγ 2. If
we substitute values fore, h̄, andm, Eq. (5.4c) indicates photon energies in the keV range
(nanometer wavelengths) for typical values ofγ andB found in modern storage rings, e.g.,γ
of several thousand andB of 1T or more. For highly relativistic electrons it is convenient to
express the total electron energy in terms ofγ and the electron rest energy,mc2, as6

γ = Ee

mc2
= 1957Ee(GeV) (5.5)

where on the right side we have used the fact that the electron rest energy is 0.5110 MeV, and
expressed the electron energyEe in GeV.

The description of expected photon energy spread obtained above, Eq. (5.4c), is based on
relatively simple arguments involving Heisenberg’s uncertainty principle. It is valuable in that
it provides a measure of the expected photon energies radiated by accelerated charges moving
at relativistic speeds, and gives a functional dependence in terms ofBγ 2. The numerical
factor (2) obtained by this argument is, however, is somewhat arbitrary in that it depends
on the angular distribution of radiation embodied in our assumption thatθ ' 1/2γ . A
more precise description of the photon energy distribution, obtained by a rigorous solution of
Maxwell’s equations for a relativistic electron in a uniform magnetic field, introduces instead a
factor of 3

2 and a more useful definition of1E. The results are somewhat complex, involving
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TABLE 5.2. Sample values of the functions
G1(y) andH2(y), wherey = ω/ωc (following
Green.7).

y G1(y) H2(y)

0.0001 9.959× 10−2 6.271× 10−3

0.0010 2.131× 10−1 2.910× 10−2

0.0100 4.450× 10−1 1.348× 10−1

0.1000 8.182× 10−1 6.025× 10−1

0.3000 9.177× 10−1 1.111× 100

0.5000 8.708× 10−1 1.356× 100

0.7000 7.879× 10−1 1.458× 100

1.000 6.514× 10−1 1.454× 100

1.500 4.506× 10−1 1.250× 100

2.000 3.016× 10−1 9.780× 10−1

3.000 1.286× 10−1 5.195× 10−1

4.000 5.283× 10−2 2.493× 10−1

5.000 2.125× 10−2 1.131× 10−1

7.000 3.308× 10−3 2.107× 10−2

10.00 1.922× 10−4 1.478× 10−3

modified Bessel functions of the second kind (see Refs. 1–3). Definingθ as the in-plane
observation angle for radiation from relativistic electrons traveling in a circular path, andψ

as the out-of-plane (vertical) angle, Kim3 shows that the photon fluxFB for bending magnet
radiation is given on axis by

d3FB

dθ dψ dω/ω

∣∣∣∣
ψ=0

(5.6)

= 1.33× 1013E2
e(GeV)I (A)H2(E/Ec)

photons/s

mrad2 · (0.1% BW)

where the electron energyEe is in GeV, the average currentI is in amperes, where the units
of relative spectral bandwidthdω/ω are expressed non-dimensionally as a factor of 10−3, or
0.1% BW, as discussed further in section 5.4.6, and the function

H2(y) = y2K 2
2/3(y/2)

is a modified Bessel function dependence, tabulated in Table 5.2 and shown graphically in
Figure 5.7. The ratioE/Ec is the photon energy normalized with respect to acritical photon
energy

Ec = h̄ωc = 3eh̄Bγ 2

2m
(5.7a)
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F IGURE 5.7. The functionsH2(y), representing
on-axis photon flux from a bending magnet, and
G1(y), representing the vertically integrated
photon flux, as functions of photon energy
normalized to the critical photon energy. Half the
radiated power is in photons of energy greater than
Ec, and half in photons of energy less thanEc

(following Kim3). Note that for a photon energy of
4Ec the photon flux is reduced a factor of about 10
from its value atEc.

The critical photon energy is that for which half the radiated power is in higher energy photons
and half is in lower energy photons. As such it provides a primary parameter for characterizing
bending magnet radiation.

Equation (5.7a) can be rewritten in practical units as

Ec(keV)= 0.6650E2
e(GeV)B(T) (5.7b)

where the critical photon energy is in keV, the electron beam energy is given in GeV, and the
magnetic field in teslas. The correspondingcritical wavelengthis

λc = 4πmc

3eBγ 2
(5.7c)

which can be written in practical units of nanometers, GeV, and teslas as

λc (nm)= 1.864

E2
e(GeV)B(T)

(5.7d)

Note that the critical photon energy given in Eq. (5.7a) is well within the range of pho-
ton energies estimated by Eq. (5.4c) on the basis of relativistic angular transformations and
Heisenberg uncertainty arguments.

The critical photon energy is in fact a very useful parameter for characterizing synchrotron
radiation from relativistic electrons as they traverse the fields of a bending magnet. For ex-
ample, of two new storage rings operating in the United States, the Advanced Light Source
(ALS) at Lawrence Berkeley Laboratory in California, with a beam energy of 1.9 GeV and
a bending magnet field strength of 1.27 T, has a critical photon energy of 3.1 keV and a
critical wavelength of 0.41 nm (4.1 Å), while the Advanced Photon Source (APS) at Argonne
National Laboratory in Illinois, with a beam energy of 7.0 GeV and a bending magnet field
strength of 0.60 T, has a critical photon energy of 20 keV and a critical wavelength of 0.064 nm
(0.64 Å).

Typical parameters characterizing synchrotron radiation from these two representative
facilities are presented in Table 5.1. Between the two they cover a broad region of the elec-
tromagnetic spectrum. In fact, inspection of Figure 5.7 shows that on axis the photon flux
decreases by only a factor of 10 at a photon energy equal to 4Ec. For many experiments this
significantly extends the useful range of bending magnet radiation, for instance to 12 keV at
the ALS, and to 80 keV at the APS. Further enhancements using strong field periodic wigglers
are also possible. Wiggler radiation is described at the end of this chapter.
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TABLE 5.3. Measures of angular divergence of
bending magnet radiation in the vertical plane, as
a function of normalized photon energy. Single
sided rms and full width at half maximum
(FWHM) measures are given. (Following Kim.3)

E/Ec σ′ψ (rms) FWHM

0.01 5.0/γ 12/γ
0.03 3.3/γ 7.8/γ
0.1 2.0/γ 4.7/γ
0.3 1.2/γ 2.8/γ
1 0.64/γ 1.5/γ
3 0.37/γ 0.9/γ
10 0.18/γ 0.4/γ

On occasion it is convenient to know the bending magnet photon flux per unit horizontal
angleθ , integrating out the vertical planeφ-dependence. In this case Kim3 finds that the
radiated photon flux, in units of photons per second per milliradian per 0.1% relative spectral
bandwidth, is given by

d2FB

dθ dω/ω
= 2.46× 1013Ee(GeV)I (A)G1(E/Ec)

photons/s

mrad· (0.1%BW)
(5.8)

where the function

G1(y) = y
∫ ∞

y
K5/3(y′) dy′

is also shown graphically in Figure 5.7. Note that by the definition ofEc, the integrals of
G1(y) from zero to one and from one to infinity are equal, as suggested in Figure 5.7. Table 5.2
gives some specific values of the functionsH2(ω/ωc) andG1(ω/ωc).

Note that the bending magnet radiation is linearly polarized when viewed in the horizontal
plane of acceleration. When viewed outside this plane, bending magnet radiation is elliptically
polarized. The out of plane photon flux, decomposed into horizontal and vertical polariza-
tion components, is given by Kim.3 Kim also introduces a convenient measure of angular
divergence3 in the vertical plane,σ ′ψ , for bending magnet radiation. This divergence angle
varies with normalized photon energy,E/Ec. Fitted to a Gaussian angular distribution, the rms
half angle in the vertical plane is 0.64/γ at E/Ec = 1. Full width at half maximum (FWHM)
measures are larger by a factor of 2.35. Sample values are given in Table 5.3 for sample values
of E/Ec.

Since the acceleration of electrons is confined to the horizontal plane (for vertical bending
magnet fields), the electric field of the resultant radiation will be linearly polarized in that
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F IGURE 5.8. Illustration of narrow cone undulator radiation that is generated by electrons traversing a
periodic magnet structure.

plane. The general polarization properties of bending magnet radiation for arbitrary angles of
observations are discussed in Ref. 3.

5.3 CHARACTERISTICS OF UNDULATOR RADIATION

An electron traversing a periodic magnet structure8 of moderate field strength will undergo
a small amplitude oscillation and therefore radiate. If the electron’s angular excursions are
small compared to the natural radiation width,θe < 1/2γ , the device is referred to as an
undulator(see Figure 5.8). The resultant radiation is greatly reduced in wavelength,λ, from
that of the magnet period,λu. We will see shortly that Lorentz contraction and relativistic
Doppler shift lead to a reduction in the radiated wavelength by a factor of 2γ 2. As γ can
easily be several thousand, undulator periods measured in centimeters lead to observed x-ray
wavelengths measured in angstroms.

While discussing undulator radiation, we will find it convenient to consider the radiation
in several frames of reference. Many of the calculations will be done in the reference frame
moving with the electron. We will then transform the results to the rest frame of the laboratory
via Lorentz transformations (see Ref. 9 or Appendix F, Lorentz Space–Time Transformations).
The following is a brief introduction to undulator radiation. A more detailed discussion will
follow in subsequent sections.

In the frame moving with the electron, the electron “sees” a periodic magnet structure
moving toward it with a relativistically (Lorentz) contracted period,λ′, given by

λ′ = λu

γ
(5.9)

whereγ ≡ 1/
√

(1− v2/c2), v is the relative velocity, andc is the velocity of light in vacuum,
as discussed in Appendix F. Due to the periodic magnet, the electron experiences an oscillation
and consequently radiates. In the frame moving with the electron this problem is that of the
classicalradiating dipole, a point charge oscillating with an amplitude much smaller than
the radiated wavelength. The frequency of this emitted radiation, in the reference frame of
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λ′

λ′ λxv

Note: Angle-dependent doppler shift

v << c v   c~<

F IGURE 5.9. Radiation from an oscillating charge moving at (a) a non-relativistic and (b) a relativistic
speed. Short wavelengths are observed because comparable speeds of the moving charge (v) and the
radiation (c) reduce the separation of succeeding phase fronts. Indeed, as v approaches c, the spatial
phase variations (λ) are dramatically compressed by many orders of magnitude. (Following J. Madey.)

the electron, is

f ′ = c

λ′
= cγ

λu

To the observer in the fixed laboratory reference frame, the radiation wavelength is further
reduced by Doppler shifting. The Doppler shift is dependent on the relative velocity and
therefore is dependent on the observation angleθ , as can be deduced from Figure 5.9. The
shortest wavelength is observed on axis. The relativistic form of the Doppler frequency
formula is [see Appendix F, Eq. (F.8b)]

f = f ′

γ (1− β cosθ )
= c

λu(1− β cosθ )
(5.10)

whereβ ≡ v/c andθ is the observation angle measured from the direction of motion.
Let us first analyze the observed frequency on axis. Hereθ = 0, cosθ = 1, and

f = c

λu(1− β)

As noted in Eq. (5.3), forβ ' 1 we have 1− β ' 1/2γ 2. Therefore, the observed radiation
frequency on axis is

f = 2γ 2c

λu

and the observed wavelength on axis is

λ = c

f
= λu

2γ 2
(5.11)

Note that the observed wavelength,λ, is relativistically contracted by a factor 2γ 2 from the
period of the undulator. Again using the ALS as an example, with a 1.9 GeV electron energy,
γ ' 3700 [see Eq. (5.5)]; thus 2γ 2 ' 2.8× 107. If the undulator period isλu = 5.0 cm, the
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resultant on-axis radiation will be relativistically shifted to an observed wavelength of order

λ ' 5.0cm

2.8× 107
' 1.8 nm

Thus the periodic magnet generates radiation peaked in the soft x-ray region of the electro-
magnetic spectrum.

If we wish to consider Doppler shifts at small angles off axis (θ 6= 0), we can return to
Eq. (5.10) and use the small angle approximation. The Taylor expansion for small angles is
cosθ = 1− θ2/2+ · · ·; therefore,

f =
c
λu

1− β
(
1− θ2

2 + · · ·
) = c

λu

1− β + βθ2

2 + · · ·
=

c
(1−β)λu

1+ βθ2

2(1−β)

Sinceβ ' 1 and by Eq. (3) 1− β ' 1/2γ 2, one has

f =
2γ 2c
λu

1+ 2γ 2θ2

2 − · · ·
= 2cγ 2

λu(1+ γ 2θ2)

In terms of the observed wavelengthλ = c/ f , one has to first order

λ = λu

2γ 2
(1+ γ 2θ2) (5.12)

We again see the 2γ 2 contraction on axis, but now with the off-axis radiation having a wave-
length increased by a factor (1+γ 2θ2). Hence, to observe the narrow bandwidth characteristic
of this relativistic harmonic oscillator, it is necessary to select only near-axis radiation.

As we will see explicitly in a following section, the magnetically induced undulation
causes the electron to follow a somewhat longer pathlength as it traverses the undulator.
Thus, the mean axial velocity is reduced, resulting in a modified Doppler shift and therefore
somewhat longer wavelengths than indicated by Eq. (5.12), and a broader radiation cone as
well.

5.3.1 Undulator Radiation Pattern

As we saw in Chapter 2, Eqs. (2.25)–(2.33), an oscillating electron of charge−e undergoing
an accelerationa will radiate electromagnetic waves characterized by an electric field (also
see Leighton, Ref. 9).

E(r , t) = ea(t − r/c)

4πε0c2r
sin2

and an orthogonal magnetic field

H (r , t) = ea(t − r/c)

4πcr
sin2

wheret − r/c is the retarded time (delayed arrival at distancer ), and2 is the angle between
the direction of acceleration (a) and the propagation direction (k0). Because the electric
and magnetic fields are orthogonal, their cross product gives a Poynting vectorS (power per
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a
sin2Θ

a

Θ

(a) (b)

F IGURE 5.10. Illustration of an oscillating charge and the resultant radiation pattern. Note that there is
no radiation in the direction of acceleration, giving the radiation pattern a doughnut-like appearance.

sin2 Θ′
(a)

θ 1
2γ~

(b)
a′

Θ′

F IGURE 5.11 (see Colorplate VI). (a) Illustration of the radiation pattern of an oscillating electron in the
frame of reference moving with the average electron speed. (b) Illustration of the radiation pattern of a
highly relativistic electron as observed in the laboratory frame of reference. The shortest wavelengths
are observed on axis. (Following Hofmann.2)

unit area) of

S= E× H =
[

e2a2 sin22

16π2ε0c3r 2

]
k0

The radiated power per unit solid angle is [Chapter 2, Eq. (2.34)]

d P

dÄ
= r 2|S| = e2a2

16π2ε0c3
sin22

Hence, the radiation pattern has a toroidal sin22 shape, because there is no radiation in the
acceleration direction (2 = 0), as illustrated in Figure 5.10.

For an undulating electron, undergoing simple oscillations in its own reference frame
(γ ), one obtains the same radiation pattern. However, the radiation pattern as observed in
the laboratory frame is relativistically contracted into a narrow radiation cone (the so-called
searchlight effect) as shown in Figure 5.11(b). Considering the symmetry of the problem, it
is convenient to work with a polar coordinate system measured from thez-axis. For instance,
in the plane defined by the electron acceleration (a) and thez-axis, the factor sin22′ becomes
cos2 θ ′, θ ′ being the polar angle measured away from thez-axis in the primed coordinate
system. In this primed electron frame of reference the radiation pattern has a half-intensity
angle at cos2 θ ′ = 1

2 or θ ′ = 45◦. According to Eq. (5.1), this corresponds to an angle in the
unprimed laboratory (observer) frame of reference ofθ ' 1/2γ . Returning to the example
of a 1.9 GeV electron (γ ' 3700), in this case traversing a periodic magnet structure, one
anticipates that radiated x-rays will largely be confined to a cone of half angle 140µrad. As
we will see in the following paragraphs, further cone narrowing can be obtained in the case
of undulator radiation.
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F IGURE 5.12. (a) The radiation spectrum as seen in the frame of reference moving with the electron is
narrow with a relative spectral bandwidth of order 1/N, whereN is the number of oscillation periods.
(b) In the laboratory frame of reference, the wavelengths are shorter, but the spectrum is broader due to
off-axis Doppler effects. (Following Hofmann.2)

5.3.2 The Central Radiation Cone

The spectrum of radiation in the two reference frames is shown in Figure 5.12(a) and (b).
Figure 5.12(a) shows the narrow spectral width in the electron frame, set by the harmonic
oscillation for a fixed number of periodsN. This is essentially a frequency–time (Laplace)
transform.

For example, the ALS has undulators of 5.0 cm period, with a length of 89 periods, so
that one can expect1ω′/ω′ = 1λ′/λ′ of order 0.01. Note, however, that upon transformation
to the laboratory frame of reference, off-axis Doppler effects will broaden this considerably.
Figure 5.12(b) illustrates the Doppler shifted spectrum that results when the sin22 dipole
radiation pattern is transformed according to Eqs. (5.1) and (5.12).

Recall that we have determined the undulator equation (5.12) in the laboratory frame,
viz.,

λ ' λu

2γ 2
(1+ γ 2θ2)

and have also noted that the radiation is primarily contained in a narrow cone of half angle
θ = 1/2γ . The corresponding spectral width within this cone can thus be estimated by taking
the difference of Eq. (5.12) for two angles. Taking the wavelength asλ on axis (θ = 0), and
λ+1λ off axis at angleθ , then taking ratios, one obtains

1λ

λ
' γ 2θ2 (5.13)

where Eq. (5.13) shows how the wavelength increases as one observes the radiation off axis.
Note that for radiation within the cone of half angleθ ' 1/2γ the relative spectral bandwidth
given by Eq. (5.13) is14; thus the cone of half-intensity half angle encloses a relative spectral
bandwidth of about 25%. Use of aperture spectral filtering is illustrated in Figure 5.13. Often,
further spectral narrowing is desired, for instance, when probing in the vicinity of sharp atomic
resonance features. In such cases, a monochromator of some type (see Chapter 8) is employed
that acts as a narrow bandpass filter. In the case of radiation from a single electron or a tightly
constrained bunch of electrons, modest spectral filtering (as narrow as 1/N) can be obtained
with a simple small-angle selecting aperture (pinhole). In this limit, we will see that angular
width and spectral width are closely connected. The interrelationship is shown in Figure 5.14.

Further cone narrowing can be appreciated by considering the undulator equation for two
angular positions, one on axis and one at angleθ , as we did previously in Eq. (5.13). If one
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F IGURE 5.13. The spectrum of undulator radiation in the laboratory frame of reference before and after
selecting an angular cone near the axis. With a sufficiently small electron beam phase space
(size–angle product) this can provide a simple mechanism for monochromatization.
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F IGURE 5.14. Illustration of a grating monochromator as used to filter undulator radiation to a “natural”
spectral width 1/N, and the concomitant cone narrowing to 1/γ

√
N that occurs with a tightly

constrained electron beam.

sets the monochromator for a “natural” bandwidth1λ/λ, set by the number of oscillation
periods,N, then one obtains the condition

1λ

λ
= 1

N
(5.14)

which, when combined with Eq. (5.13), indicates that narrower bandwidth radiation occurs
in aconcomitantly narrower “central” radiation coneof half width

θcen' 1

γ
√

N
(5.15)

This narrow undulator radiation cone implies an emission solid angle reduced by a factor
1/N. These factors become very important when considering brightness and coherence (see
Chapter 8).


